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Abstract
This work introduces a novel approach inspired by Low
Rank Adaptation (LoRA) to effectively couple large AI
models processing diverse modalities. By leveraging a
global context temporal buffer of low rank states, we es-
tablish a coherent framework for integrating pre-trained
domain-specific foundation models into a single multi-
modal agent. The proposed architecture facilitates the
development of self-learning free-running AI agents that
demonstrate striking parallels to biological intelligence.

1 Introduction
Current approaches to multi-modal AI face a fundamental
trade-off: training unified models from scratch is computa-
tionally prohibitive, while naively combining pre-trained
foundation models fails to achieve coherent cross-modal
reasoning. Moreover, existing architectures process in-
puts in discrete episodes rather than continuous temporal
streams, limiting their applicability to autonomous agent
applications that require persistent interaction with dy-
namic environments.

We address these challenges by introducing Dynamic
Low-Rank Adaptation (DyLoRA), a technique that
extends static LoRA fine-tuning (Hu et al. 2021) to
dynamically generate adaptation states. Rather than
learning fixed low-rank matrices 𝐵𝐴 for model adaptation,
we train a prediction network q that generates time-
varying low-rank states based on multi-modal inputs and
temporal context. This enables efficient coupling of frozen
foundation models across modalities without expensive
joint pre-training.

The key architectural component is the global context
(GC)—a temporal FIFO buffer storing sequences of low-
rank states, encoded inputs, and metadata. The GC
functions as a memory-efficient state representation with
three critical properties: (1) it extends effective context
length beyond transformer attention limits (𝑂(𝑛2) com-
plexity); (2) it enables information exchange between
heterogeneous foundation models through shared state
representation; and (3) it provides a compact state space
for reinforcement learning-based continuous operation.

Our approach yields three concrete contributions:

1. Scalable context extension: We demonstrate that
transformers augmented with GC can process se-
quences of millions of tokens by storing compressed
states rather than full attention matrices, achiev-
ing 𝑂(𝑁 log 𝑁) complexity through locality-sensitive
hashing.

2. Modular multi-modal integration: Foundation
models remain frozen while lightweight LR predic-
tion networks mediate cross-modal information flow.
This decoupled architecture permits independent
training on imbalanced datasets and computational
cost dominated by inference rather than training.

3. Continuous autonomous agents: By framing
the GC as a reinforcement learning state space, we
enable free-running agents that learn from temporal
interaction streams. The LR prediction network
functions as a continuous DQN, while the GC serves
as both working memory and replay buffer.

Preliminary experiments on LLM fine-tuning demonstrate
that GC-based adaptation achieves performance compara-
ble to standard LoRA, even when local context is ablated,
confirming effective information extraction and storage
in the compressed global state.

The architecture exhibits computational efficiency anal-
ogous to biological intelligence: specialized processing
modules (foundation models), cross-modal coordination
(LR coupling), hierarchical memory (local context, GC,
learned weights), and offline consolidation phases (train-
ing on replay buffer). This establishes a tractable path
toward general-purpose agents that process continuous
multi-modal streams.

2 Background and Related Work
Although multi-modal AI has received considerable at-
tention, significant challenges persist. These include data
alignment across modalities, handling missing modalities,
addressing modality imbalance, and ensuring scalability
of training and inference processes. Current research
efforts focus on addressing these challenges to enhance
the capabilities of multi-modal AI systems.
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Figure 1: Lora vs DyLoRA

Training multi-modal AI models from scratch can be
computationally prohibitive. To address this challenge,
we propose leveraging existing domain-specific models
and integrating them to create a unified multi-modal
system. This approach draws inspiration from biological
intelligence, where the brain exhibits functional special-
ization across different regions. By utilizing pre-trained
models specialized in distinct domains, we can harness
their expertise and integrate them into a cohesive frame-
work. This fine-tuning-based strategy for constructing
multi-modal models offers a cost-effective alternative to
training from scratch while maintaining the modularity
observed in biological intelligence.

AI finetuning is a crucial aspect of developing high-
performing machine learning models. It involves the
process of refining a pretrained model on a specific task
or dataset to improve its performance, adapt it to new
domains, or address specific requirements. Finetuning
allows models to leverage the knowledge gained from
pretraining while tailoring them to specific applications,
leading to more accurate and effective results. An exten-
sive overview of different finetuning strategies is given in
Kaplan et al. (2020).

One notable prior art in this area is the Low rank adap-
tation (LoRA) method Hu et al. (2021), which has at-
tracted significant attention for its effectiveness in finetun-
ing large-scale language models. LoRA offers flexibility
in incorporating domain-specific information into the
low-rank approximation, enabling better adaptation and
fine-grained control over the model’s behavior.

It was discovered in Hu et al. (2021) that rank as low as
1 can be sufficient to inject the context from a relatively

small finetuning dataset into the main large language
model. Building on top of success of LoRA finetuning,
we hypothesise that the low rank adaptation states can
be also used to provide a wide context for a AI generative
models in a dynamic manner. We propose a new AI model
architecture that dynamically derives low rank adaptation
states from multple modalities and previous model ex-
perience enabling efficient continuous mode multi-modal
generative AI. Furthermore, we develop the proposed
architecture to include high level cognitive functions of a
human brain.

While today’s language models (LLMs) are incredibly
powerful, relying solely on textual information may not
be sufficient to construct a comprehensive understanding
of the real world. Biological intelligence (BI), on the
other hand, operates with series of multimodal signals,
processing information over time. In this paper, we delve
into the exploration of architectures that enable continu-
ous operation with streams of information from multiple
modalities, aiming to approximate the functioning of the
human brain.

3 Methodology
The fundamental concept of low-rank adaptation is il-
lustrated in Figure 1(a) and Equation 1. Each fully
connected coefficient matrix 𝑊 in the original model is
augmented with a low-rank adaptation matrix 𝐵𝐴, where
only the 𝐵𝐴 component is trained during fine-tuning.

ℎ = 𝑊𝑥 + 𝐵𝐴𝑥 (1)

Extensive LoRA fine-tuning experiments demonstrate
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that complex generation patterns, defined by relatively
small fine-tuning datasets, can be effectively encoded us-
ing the low-rank state of the adapter matrix 𝐵𝐴. We
propose replacing static low-rank adaptation with Dy-
namic Low Rank Adaptation (DyLoRA), which predicts
the low-rank adaptation state (LR state) based on exter-
nal information modalities and previous experience.

This concept is illustrated in Figure 1(b). Rather than
training static weights to derive the LR state, we propose
training a network q that dynamically generates the low-
rank adaptation state based on the current input 𝑥 and
previous states 𝐺𝑖, as shown in Equation 2.

ℎ = 𝑊𝑥 + 𝐵 ⋅ q(𝐴𝑥, 𝐺𝑡−1, 𝐺𝑡−2, ...) (2)

The previous states 𝐺𝑖 are stored in a first-in-first-out
(FIFO) queue termed the global context (GC). The
GC contains a temporal sequence of predicted LR states
qt−1, qt−2, ..., inputs 𝐴𝑥𝑡−1, 𝐴𝑥𝑡−2, and additional global
state information detailed in subsequent sections. Thus,
the GC functions as a temporal sequence of features
encoding the compressed state of the main generative AI
model.

Similar to the static LoRA finetuning approach, the pre-
dicted LR state q dynamically establishes an appropriate
context for generation, enabling various applications that
will be explored in the following discussions.

3.1 Context extension
Current transformer architectures, despite their remark-
able performance across various natural language process-
ing tasks, face limitations regarding input context length.
Transformers typically operate on fixed-length input se-
quences, and processing longer sequences requires sub-
stantially increased computational resources and memory.
The attention mechanism exhibits 𝑂(𝑛2) time complexity,
practically limiting input sequence length (local context)
to thousands of tokens.

The GC provides memory-efficient encoding of trans-
former states, enabling storage of millions of states with-
out exceeding practical memory constraints. The time
complexity of conventional attention mechanisms can be
improved by adopting locality-sensitive hashing (LSH)
attention, which reduces complexity to 𝑂(𝑁 log 𝑁) with-
out significant performance degradation Kitaev, Kaiser,
and Levskaya (2020).

Figure 2 illustrates the architecture of a transformer
model incorporating the proposed global context. The
transformer generates sequences based on local context,
typically limited to thousands of tokens. As generation
progresses, the corresponding LR states are stored in the

global context. The LR state prediction model processes
the GC as input and generates predicted LR states (q)
that are injected into the main model, biasing it toward
generating the intended sequence.

The LR state prediction model q can be implemented
using an LSH transformer Kitaev, Kaiser, and Levskaya
(2020) or other architectures capable of efficiently pro-
cessing long sequences.

Global context, together with LR states, can also hold
other auxilary global state information, for example token
position/time encoding using techniques similar to the
position ecoding in the original Vaswani et al. (2017)
paper.

3.2 Modality coupling
The global context can also be used to efficiently couple
information from one modality to another. Figure 3 illus-
trates an architecture that combines text, video, audio,
and other domains. This approach utilizes pretrained
foundation models with fixed weights, which are intercon-
nected through the global context register.

In this architecture, the foundation models extract fea-
tures from the input data, representing them as LR (Low
Rank) states. These LR states are concatenated and
stored in the global context register, forming a composite
LR state. The LR state prediction model takes the tem-
poral series of composite LR states as input and generates
the LR state for the subsequent generation cycle, which
is then used by the foundation models.

One of the challenges in training multimodal models lies
in dealing with imbalanced datasets. By using LR states
to adapt the frozen foundation models, it becomes possi-
ble to decouple different modalities and train separate LR
prediction models for pairs or sets of modalities. Each
pair or set of modalities has its own independent pre-
diction network within the LR state prediction model.
Furthermore, after completing the decoupled pretraining
of the multimodal model, a coupled network can be added
to the LR state prediction model.

The global context serves as an aggregator of informa-
tion from various modalities, enabling the inclusion of
peripheral sensors and actuators. This comprehensive
representation within the model allows for a coherent
internal understanding of the world and facilitates the
integration of diverse modalities into a unified framework.

3.3 Free-running self-learning agent
While current AI systems predominantly focus on static
tasks, it is worth noting that biological intelligence primar-
ily revolves around the processing of temporal sequences.
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Figure 2: Transformer context extension using global context
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Figure 3: Multimodal model with a global context
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Figure 4: Free-running self-learning agent
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To bridge this gap, the proposed global context archi-
tecture can be naturally extended to interact with the
external world and acquire new experiences through this
interaction.

In the proposed framework, the foundation models can
be configured for continuous mode generation, with the
objective of predicting the next state based on the cur-
rent input sensory data and internal state. For instance,
given previous image frames, audio inputs, and other rel-
evant information, the foundation models aim to predict
the subsequent image frame. Consequently, the domain
models encompass two key components: an encoder that
connects to the sensory inputs, and a decoder responsible
for generating the expected next sensory input state.

Both the encoding and decoding processes are facilitated
by the utilization of LR states. The prediction of the
next state relies on the model’s local context alongside the
LR state prediction generated by the LR state prediction
model. This interplay between the local context and
LR state prediction ensures that the model effectively
captures the temporal dependencies within the input
sequences, enabling accurate generation of subsequent
sensory states.

The proposed architecture, depicted in Figure 4, can be
framed within the context of Reinforcement Learning
(RL). The global context serves as the state space for the
RL agent, while the LR state prediction model takes the
form of a continuous deep Q network (DQN) that gener-
ates predictions (actions) for the next LR state, aiming
to maximize a reward function. By defining the reward
function, RL approaches can be employed to train the LR
state prediction model, leveraging successful techniques
used in challenging RL tasks such as the game of Go or
Starcraft (references to be added). The global context
functions as an accumulator of past experiences, serving
as a replay buffer in the RL system. This enables the free-
running agent to observe the surrounding environment
coherently, learn from experience, and adapt its behavior
to maximize the reward.

It is worth noting that the definition of the reward func-
tion is a crucial aspect of the system. At this stage, as the
system operates at a highly abstract level encoded in the
global context, it may be impractical or even impossible
to programmatically define the reward function based
on the sensory inputs directly. However, the decoder
models in the proposed architecture offer interpretable
insights into the current internal state. Consequently, it
is feasible to define the reward function at an abstract
level by fine-tuning a decoder foundation language model
to generate the reward function based on observations
of the internal state. Various fine-tuning approaches can
be utilized (see an overview in Lialin, Deshpande, and

Rumshisky (2023)), with Low rank adaptation (LoRA)
being particularly promising due to its ability to reuse
the frozen foundation model with minimal computational
overhead and proven performance.

Therefore, the problem of reward function definition can
be formulated as a set of human-interpretable statements
used for the fine-tuning of the reward model. The re-
ward value would be determined by the proximity of the
internal state to the reward shaping statements. This
approach aligns with our belief that formulating compre-
hensive laws or principles for Human-AI alignment re-
quires more than concise statements like Asimov’s Three
Laws of Robotics or the Bible’s Ten Commandments.
Such concise formulations often leave room for misin-
terpretation and can potentially lead to disastrous con-
sequences. Throughout human history, religious texts
like the Bible have provided collections of stories to illus-
trate and clarify underlying values, resolving ambiguities
and providing guidance in practical situations. These
religious manuscripts can be seen as datasets that have
contributed to the fine-tuning of societal values.

As AI reasoning becomes increasingly abstract, there is
an escalating need for datasets that align human values
with AI systems. Humans inherently possess biases, and
these biases are manifested in the internet, which is a
reflection of human activity. Consequently, foundation
models trained solely on internet data inherit these biases,
making them potentially unsafe in their raw form. To
establish a reliable alignment between humanity and AI,
it is essential to fine-tune generic foundation generative
AI models with data specifically aligned to human values.
The creation of comprehensive datasets that inject agreed-
upon values into new AI models as a final fine-tuning
step is crucial for shaping the reward function effectively.

The reward function LoRA adapter serves as the reference
for the AI agents and is not programmable by the agent
itself.

Throughout continuous operation, the global context
buffer fills with composite LR states; the overflowing
values are offloaded to the global context replay buffer.
Reward values are stored in the global context along-
side the LR states. Once the global context and replay
buffer are filled, training of the DQN commences using
the buffered data, adjusting the weights of the DQN to
maximize the reward. An overview of different RL ap-
proaches in discrete and continuous spaces can be found
in Zhu, Wu, and Zhao (2021). The optimal RL approach
will be determined throughout the course of the project.
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4 Training
The training process is conducted in several phases with
the objective of developing an effective multi-modal net-
work and a self-learning AI agent based on the principles
outlined in this paper:

Global Context Extension of LLM Models. The
first phase focuses on extending the global context of
the large language models (LLMs). This step involves
exploring and implementing techniques to incorporate
the global context architecture into the existing LLM
models.

Cross-Domain Pretraining for Multiple Modal-
ities. The second phase involves pretraining the net-
work for multiple modalities, starting with text and pro-
gressively incorporating other modalities such as images,
video, and sound. The goal is to develop a comprehensive
multi-modal framework that can effectively process and
integrate information from different domains.

Reinforcement Learning. In the final phase, we con-
duct experiments to train and evaluate the RL agent.
This involves training the agent to interact with its envi-
ronment, learn from experiences, and optimize its behav-
ior using reinforcement learning techniques.

The optimal architecture is determined through a series
of experiments that explore various hyperparameters,
including the rank of LR coupling.

Previous experiments with LoRA finetuning (Hu et al.
2021) have shown that the computational cost of fine-
tuning the system is negligible compared to the cost of
training the foundation models. This allows for efficient
allocation of the training budget, with a focus on the
computationally demanding RL experiments.

5 Experimental Results
5.1 Initial Results
We present preliminary experimental results demonstrat-
ing the effectiveness of our approach.

We evaluated the effectiveness of the global context archi-
tecture using RoBERTa LLM, with results shown in Fig-
ure 5. The model was fine-tuned on the MRPC task using
both conventional LoRA (lora baseline) and the proposed
global context architecture (not-blinded-dynamic-with-
global-context). We observed comparable performance
between these approaches. Additionally, we replaced
the local context with PAD tokens, effectively “blinding”
the local context (blinded-dynamic-with-global-context),
forcing the model to rely exclusively on information pro-
cessed and stored in the global context. Performance

degradation was minimal, confirming the architecture’s
capability to extract valuable information from foun-
dation model hidden states and effectively apply it to
downstream tasks. As a control, we conducted an ex-
periment (blinded-dynamic-no-global-context) with zero
global context size, rendering the model unable to adapt
to the task due to lack of information in both local and
global contexts.

The preliminary results demonstrated in Figure 5 con-
firm the effectiveness of information coupling through the
global context architecture, establishing a solid founda-
tion for future expansion into multimodal and temporal
coupling applications.

6 Analogies with bio-intelligence
The proposed architecture of the free-running self-learning
agent aligns closely with several functions observed in
biological intelligence.

Memory. The self-learning agent incorporates three
types of memory:

1. “Muscle” memory, represented by the local context
of the foundation models, which contains detailed
information necessary for consistent generation.

2. Short-term memory, represented by the global con-
text, holds recent experiences.

3. Long-term memory, represented by the periodically
fine-tuned LR state prediction model, retains impor-
tant experiences and behavioral patterns.

The local context captures raw details and is crucial
for maintaining coherence in generation. Current large
language models (LLMs) and audio models typically have
a local context size ranging in thousands of tokens. The
image and peripheral generative models would also benefit
from frame buffers.

Each sample in the global context includes timestamp
information that can be encoded using (e.g. using a set of
harmonic functions Vaswani et al. (2017)), similar to the
encoding of biological neural oscillations that may have
similar timestamping function in the brain. Additionally,
a decaying weight function can be applied to the global
context to prioritize more recent experiences and emulate
forgetting.

The periodically fine-tuned LR state prediction model
that captures the most relevant information through pe-
riodic RL finetuning can be considered as a long term
associative memory.

Furthermore, the global context may include a set of
states that are not connected to the foundation models
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Figure 5: Illustration of efficiency of the global context based on Roberta LLM finetuning on MRPC task

but utilized by the LR state prediction model as tempo-
rary storage. LSTM and GRU memory cells can also be
incorporated into the LR state prediction model architec-
ture.

Learning, need for sleep and “hapiness”. During
continuous operation, the agent stores LR states together
with global states in the global context. Assuming an
operating frequency of 25 cycles per second, a global
state buffer of approximately 1 million samples would
be required to store continuous experiences from a 12-
hour day. When the global context overflows, the excess
samples are flushed into the replay buffer.

Once the global context and replay buffers are full, the
system initiates training to reinforce behavior (LR state
prediction) that leads to an increase in the value function
and discourage behavior that decreases the value function.
The value function can be likened to the abstract feeling
of happiness. Thus, the agent’s goal is to maximize its
happiness. The more its state aligns with the state defined
by the reward function, the happier it is.

While foundation models effectively capture domain-
specific world representations, the AI agent must learn to
interact with these representations to maximize its value
function. Beyond direct world interaction, the agent can
acquire experiences through simulation. Generative foun-
dation models can be configured in autoregressive mode
by connecting outputs to inputs as local context. During
simulation sessions, the global context accumulates new
experiences similarly to real-world interactions. Once the
global context and replay buffer reach capacity, the agent
learns from these simulated experiences through training.

The agent cannot simultaneously interact with the en-
vironment while undergoing training or simulation—it
requires periods of offline processing analogous to sleep.
The simulation and training phases correspond to REM
(rapid eye movement) and NREM (non-rapid eye move-

ment) sleep phases in humans. During REM sleep, neural
mechanisms inhibit motor functions and minimize sen-
sory processing. Similarly, the agent must deactivate
actuators and input sensors during offline phases, en-
abling immersive simulation and experience extraction
from world representations encoded in foundation models.

Curiosity. For efficient learning, the agent must be moti-
vated to explore uncharted territory and possess effective
means of identifying and capturing new knowledge.

At each step, the agent predicts the next step using the
generative foundation models. The discrepancy between
the prediction and the actual sensory input can serve as
a marker of surprise, encouraging the memorization of
unexpected experiences.

The agent’s reward function can be formulated to pro-
vide rewards for positive surprise experiences, thereby
stimulating curiosity. We refer to this as curiosity-driven
exploration.

7 Conclusion
The path toward Artificial General Intelligence lies in the
effective processing of temporal sequences. The proposed
architecture provides a computationally efficient frame-
work for coherent processing of sensory data streams from
multiple sources.

Similar to the brain, the AI agent comprises well-defined
functional blocks that specialize in processing information
from specific domains (frozen foundation models). The
architecture includes coordination blocks that facilitate
communication between domain-specialized modules (LR
state coupling network), blocks responsible for short-term
memory (global context), long-term memory (DQN train-
ing on replay buffer), and unconscious procedural memory
(local context). The proposed architecture naturally in-
corporates concepts analogous to biological processes:
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periods of offline training (analogous to sleep), reward
optimization (analogous to satisfaction), generative sim-
ulation in the absence of sensory inputs (analogous to
imagination), and experience-based learning (DQN train-
ing on replay buffer). The reward and value functions
can be shaped through natural language specifications,
enabling an intuitive intelligence programming interface.

The internal LR state stored in the global context func-
tions analogously to cognitive states—these “thought
states” are not directly connected to outputs but rather
modulate the behavior of domain-specific foundation mod-
els.
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